AI was very popular 30 years ago, then disappeared, and is now making a big come back because of new robotic technologies: driver-less cars, automated diagnostic, IoT (including vacuum cleaning and other household robots), automated companies with zero employee, soldier robots, and much more.
Will AI replace data scientists? I think so, though data scientists will be initially replaced by “low intelligence” yet extremely stable and robust systems. There has been a lot of discussions about the automated statistician. I am myself developing data science techniques such as Jackknife regression that are simple, robust, suitable for black-box, machine-to-machine communications or other automated use, and easy to understand and pilot by the layman, just like a Google driver-less car can be “driven” by an 8 years old kid.
My approach to automating data science and data cleaning / EDA (exploratory data analysis) is not really AI: it’s just a starting point, but not a permanent solution. In the long term, it is possible that AI will handle complex regression models, far more complex than my Jackknife regression: after all, all the steps of linear or logistics regression modeling, currently handled by human beings spending several days or weeks on the problem, involve extremely repetitive, boring, predictable tasks, and thus it is a good candidate for an AI implementation entirely managed by robots.
As machine learning (ML) more and more involves AI, and the blending of ML and AI is referred to as deep learning, I can see data science evolving to deep data science (DDS) or automated data science (ADS), where AI, robots, or automation at large, take a more prominent role.
True AI systems can even predict travel time in real time based on expected traffic bottlenecks and road closures
Which jobs are threatened by AI?
Just like data science will take years to get a high level automation, where as much as 50% of human tasks are replaced by robots, I believe that these professions are at risk, but the erosion will be modest and slow, taking a lot of time to materialize:
- Teachers: some topics such as mathematics or computer science can be taught by robots, at least for the 10% of students that are self-learners. Generally speaking, topics that are currently taught by robots include flying a plane, training on an AI-powered simulator. Ironically, planes can be flew without human pilots, but studies have shown that passengers would be very scared to board a pilot-less plane. The biggest threat for teachers is not AI though, it is online training.
- Grading student papers, detect plagiarism. But students / authors are getting more sophisticated, using article-generating software powered by AI, to avoid detection. This could lead to an interesting war: AI robots designed for fraud detection fighting against AI robots designed to cheat.
- For publishers, automatically writing high-quality, curated articles in a short amount of time. An article such as this one is a good candidate for automated, AI-powered production. The first step is to identify articles that are good candidates (for curation) for a specific audience; this is also accomplished using AI.
- Can AI writes AI algorithms, or in short, can AI automate AI? I believe so; after all, I was one of the pioneers who wrote programs that write programs (software code compilers or interpreters also fit in this category). I guess this is just an extension of this concept.
- Automated diagnostic (or automated doctor, but also automated lawyer). I guess this will eliminate a small proportion of these practitioners. But what about a robot performing a brain surgery with higher efficiency than a human surgeon? Or a robot manufacturing an ad-hoc, customized client-specific drug for maximum efficiency?
- Automated chefs replacing expensive cooks in a number of restaurants. Or think about a McDonald restaurant where the only human is a security guard – everything else being outsourced to AI-powered robots, including cleaning, preparing food, delivering to customers, processing payments, filing tax returns and accounting, ordering from vendors, and so forth. This would require significant system-to-system communications, but I believe it is feasible.
- Automated policemen or soldiers is a source of concern, as you would have algorithms that decide who to kill or who to arrest. So this might not happen for a long time, though drones are replacing soldiers in a number of wars, and have the power to kill (based on some algorithm) with no one complaining about, as long as it is not happening in US. Terrorists might be attracted too by this type of technology.
- AI will be present in many IoT applications such as smart cities, precision farming, transportation, monitoring (detecting when an offshore oil platform is going to collapse), and so on.
AI and automation has already replaced many data science tasks long ago
Many people talk about the threat of AI, but as of today, many jobs have already been automated, some more than 30 years ago. For instance, during my PhD years, a lot of data transited through tapes between big computer systems, and involved trips to the computer center, interacting with a number of people taking care of the data flow. This has entirely disappeared.
We used to have shared secretaries to write research papers (they could write LaTeX documents), I think this has all but disappeared.
One of the applications that I developed in the eighties was a remote sensing software that could perform image segmentation and clustering, for instance to compute the proportion of various crops in a specific area based on satellite images, without human interactions – thus eliminating all the expensive jobs that were previously performed by humans to accomplish this task.
Final note
Those who automate data science are still data scientists. Just like those developing robots to automate brain surgery work in a team, with many members being brain surgeons. it’s just shifting the nature of the job rather than eliminating it.
DSC Resources
- Career: Training | Books | Cheat Sheet | Apprenticeship | Certification | Salary Surveys | Jobs
- Knowledge: Research | Competitions | Webinars | Our Book | Members Only | Search DSC
- Buzz: Business News | Announcements | Events | RSS Feeds
- Misc: Top Links | Code Snippets | External Resources | Best Blogs | Subscribe | For Bloggers
Additional Reading
- What statisticians think about data scientists
- Data Science Compared to 16 Analytic Disciplines
- 10 types of data scientists
- 91 job interview questions for data scientists
- 50 Questions to Test True Data Science Knowledge
- 24 Uses of Statistical Modeling
- 21 data science systems used by Amazon to operate its business
- Top 20 Big Data Experts to Follow (Includes Scoring Algorithm)
- 5 Data Science Leaders Share their Predictions for 2016 and Beyond
- 50 Articles about Hadoop and Related Topics
- 10 Modern Statistical Concepts Discovered by Data Scientists
- Top data science keywords on DSC
- 4 easy steps to becoming a data scientist
- 22 tips for better data science
- How to detect spurious correlations, and how to find the real ones
- 17 short tutorials all data scientists should read (and practice)
- High versus low-level data science
Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge