Under growing pressure to report accurate findings as they interpret increasingly larger amounts of data, researchers are finding it more important than ever to follow sound statistical practices.
For that reason, a team of statisticians including Carnegie Mellon University’s Robert E. Kass wrote “Ten Simple Rules for Effective Statistical Practice.” Published in PLOS Computational Biology for the journal’s popular “Ten Simple Rules” series, the guidelines are designed to help the research community — particularly scientists who aren’t statistical experts or without a dedicated statistician as part of their team — understand how to avoid the pitfalls of well-intended, but inaccurate statistical reasoning.
Here are the 10 rules:
#1 – Statistical Methods Should Enable Data to Answer Scientific Questions
#2 – Signals Always Come With Noise
#3 – Plan Ahead, Really Ahead
#4 – Worry About Data Quality
#5 – Statistical Analysis Is More Than a Set of Computations
#6 – Keep it Simple
#7 – Provide Assessments of Variability
#8 – Check Your Assumptions
#9 – When Possible, Replicate!
#10 – Make Your Analysis Reproducible
To read the 10 rules, click here.
DSC Resources
- Career: Training | Books | Cheat Sheet | Apprenticeship | Certification | Salary Surveys | Jobs
- Knowledge: Research | Competitions | Webinars | Our Book | Members Only | Search DSC
- Buzz: Business News | Announcements | Events | RSS Feeds
- Misc: Top Links | Code Snippets | External Resources | Best Blogs | Subscribe | For Bloggers
Additional Reading
- What statisticians think about data scientists
- Data Science Compared to 16 Analytic Disciplines
- 10 types of data scientists
- 91 job interview questions for data scientists
- 50 Questions to Test True Data Science Knowledge
- 24 Uses of Statistical Modeling
- 21 data science systems used by Amazon to operate its business
- Top 20 Big Data Experts to Follow (Includes Scoring Algorithm)
- 5 Data Science Leaders Share their Predictions for 2016 and Beyond
- 50 Articles about Hadoop and Related Topics
- 10 Modern Statistical Concepts Discovered by Data Scientists
- Top data science keywords on DSC
- 4 easy steps to becoming a data scientist
- 22 tips for better data science
- How to detect spurious correlations, and how to find the real ones
- 17 short tutorials all data scientists should read (and practice)
- High versus low-level data science
Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge