In this blog, we shall discuss about how to use H2O to build a few supervised machine learning models. H2O is a Java-based software for data modeling and general computing, with the primary purpose of it being a distributed, parallel, in memory processing engine. It needs to be installed first (instructions) and by default an H2O instance will run on localhost:54321
. Additionally, one needs to install R/python clients to to communicate with the H2O instance. Every new R / python session first needs to initialize a connection between the python client and the H2O cluster.
The problems to be described in this blog appeared in the exercises / projects in the Coursera course “Practical Machine Learning on H2O,” by H2O. The problem statements / descriptions / steps are taken from the course itself. We shall use the concepts from the course, in order to:
- to build a few machine learning / deep learning models using different algorithms (such as Gradient Boosting, Random Forest, Neural Net, Elastic Net GLM etc.),
- to review the classic bias-variance tradeoff (overfitting)
- for hyper-parameter tuning using Grid Search
- to use AutoML to automatically find a bunch of good performing models
- to use Stacked Ensembles of models to improve performance.
Problem 1
In this problem we will create an artificial data set, then run random forest / GBM on it with H2O, to create two supervised models for classification, one that is reasonable and another one that shows clear over-fitting. We will use R client (package) for H2O for this problem.
- Let’s first create a data set to predict an employee’s job satisfaction in an organization. Let’s say an employee’s job satisfaction depends on the following factors (there are several other factors in general, but we shall limit us to the following few ones):
- work environment
- pay
- flexibility
- relationship with manager
- age
set.seed(321) # Let's say an employee's job satisfaction depends on the work environment, pay, flexibility, relationship with manager and age. N <- 1000 # number of samples d <- data.frame(id = 1:N) d$workEnvironment <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good v <- round(rnorm(N, mean=60000, sd=20000)) # 68% are 40-80k v <- pmax(v, 20000) v <- pmin(v, 100000) #table(v) d$pay <- v d$flexibility <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good d$managerRel <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good d$age <- round(runif(N, min=20, max=60)) head(d) # id workEnvironment pay flexibility managerRel age #1 1 2 20000 2 2 21 #2 2 5 75817 1 2 31 #3 3 5 45649 5 3 25 #4 4 1 47157 1 5 55 #5 5 2 69729 2 4 33 #6 6 1 75101 2 2 39 v <- 125 * (d$pay/1000)^2 # e.g., job satisfaction score is proportional to square of pay (hypothetically) v <- v + 250 / log(d$age) # e.g., inversely proportional to log of age v <- v + 5 * d$flexibility v <- v + 200 * d$workEnvironment v <- v + 1000 * d$managerRel^3 v <- v + runif(N, 0, 5000) v <- 100 * (v - 0) / (max(v) - min(v)) # min-max normalization to bring the score in 0-100 d$jobSatScore <- round(v) # Round to nearest integer (percentage)
2. Let’s start h2o, and import the data.
library(h2o) h2o.init() as.h2o(d, destination_frame = "jobsatisfaction") jobsat <- h2o.getFrame("jobsatisfaction") # |===========================================================================================================| 100% # id workEnvironment pay flexibility managerRel age jobSatScore #1 1 2 20000 2 2 21 5 #2 2 5 75817 1 2 31 55 #3 3 5 45649 5 3 25 22 #4 4 1 47157 1 5 55 30 #5 5 2 69729 2 4 33 51 #6 6 1 75101 2 2 39 54
3. Let’s split the data. Here we plan to use cross-validation.
parts <- h2o.splitFrame( jobsat, ratios = 0.8, destination_frames=c("jobsat_train", "jobsat_test"), seed = 321) train <- h2o.getFrame("jobsat_train") test <- h2o.getFrame("jobsat_test") norw(train) # 794 norw(test) # 206 rows y <- "jobSatScore" x <- setdiff(names(train), c("id", y))
4. Let’s choose the gradient boosting model (gbm), and create a model. It’s a regression model since the output variable is treated to be continuous.
# the reasonable model with 10-fold cross-validation m_res <- h2o.gbm(x, y, train, model_id = "model10foldsreasonable", ntrees = 20, nfolds = 10, seed = 123) > h2o.performance(m_res, train = TRUE) # RMSE 2.973807 #H2ORegressionMetrics: gbm #** Reported on training data. ** #MSE: 8.069509 #RMSE: 2.840688 #MAE: 2.266134 #RMSLE: 0.1357181 #Mean Residual Deviance : 8.069509 > h2o.performance(m_res, xval = TRUE) # RMSE 3.299601 #H2ORegressionMetrics: gbm #** Reported on cross-validation data. ** #** 10-fold cross-validation on training data (Metrics computed for combined holdout predictions) ** #MSE: 8.84353 #RMSE: 2.973807 #MAE: 2.320899 #RMSLE: 0.1384746 #Mean Residual Deviance : 8.84353 > h2o.performance(m_res, test) # RMSE 0.6476077 #H2ORegressionMetrics: gbm #MSE: 10.88737 #RMSE: 3.299601 #MAE: 2.524492 #RMSLE: 0.1409274 #Mean Residual Deviance : 10.88737
5. Let’s try some alternative parameters, to build a different model, and show how the results differ.
# overfitting model with 10-fold cross-validation m_ovf <- h2o.gbm(x, y, train, model_id = "model10foldsoverfitting", ntrees = 2000, max_depth = 20, nfolds = 10, seed = 123) > h2o.performance(m_ovf, train = TRUE) # RMSE 0.004474786 #H2ORegressionMetrics: gbm #** Reported on training data. ** #MSE: 2.002371e-05 #RMSE: 0.004474786 #MAE: 0.0007455944 #RMSLE: 5.032019e-05 #Mean Residual Deviance : 2.002371e-05 > h2o.performance(m_ovf, xval = TRUE) # RMSE 0.6801615 #H2ORegressionMetrics: gbm #** Reported on cross-validation data. ** #** 10-fold cross-validation on training data (Metrics computed for combined holdout predictions) ** #MSE: 0.4626197 #RMSE: 0.6801615 #MAE: 0.4820542 #RMSLE: 0.02323415 #Mean Residual Deviance : 0.4626197 > h2o.performance(m_ovf, test) # RMSE 0.4969761 #H2ORegressionMetrics: gbm #MSE: 0.2469853 #RMSE: 0.4969761 #MAE: 0.3749822 #RMSLE: 0.01698435 #Mean Residual Deviance : 0.2469853
Problem 2
Predict Chocolate Makers Location with Deep Learning Model with H2O
The data is available here: http://coursera.h2o.ai/cacao.882.csv
This is a classification problem. We need to predict “Maker Location.” In other words, using the rating, and the other fields, how accurately we can identify if it is Belgian chocolate, French chocolate, and so on. We shall use python client (library) for H2O for this problem.
- Let’s start H2O, load the data set, and split it. By the end of this stage we should have
three variables, pointing to three data frames on H2O: train, valid, test. However, if you are choosing to use
cross-validation, you will only have two: train and test.
import H2O import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('http://coursera.h2o.ai/cacao.882.csv') print(df.shape) # (1795, 9) df.head()
Maker | Origin | REF | Review Date | Cocoa Percent | Maker Location | Rating | Bean Type | Bean Origin | |
---|---|---|---|---|---|---|---|---|---|
0 | A. Morin | Agua Grande | 1876 | 2016 | 63% | France | 3.75 | Sao Tome | |
1 | A. Morin | Kpime | 1676 | 2015 | 70% | France | 2.75 | Togo | |
2 | A. Morin | Atsane | 1676 | 2015 | 70% | France | 3.00 | Togo | |
3 | A. Morin | Akata | 1680 | 2015 | 70% | France | 3.50 | Togo | |
4 | A. Morin | Quilla | 1704 | 2015 | 70% | France | 3.50 | Peru |
print(df['Maker Location'].unique()) # ['France' 'U.S.A.' 'Fiji' 'Ecuador' 'Mexico' 'Switzerland' 'Netherlands' # 'Spain' 'Peru' 'Canada' 'Italy' 'Brazil' 'U.K.' 'Australia' 'Wales' # 'Belgium' 'Germany' 'Russia' 'Puerto Rico' 'Venezuela' 'Colombia' 'Japan' # 'New Zealand' 'Costa Rica' 'South Korea' 'Amsterdam' 'Scotland' # 'Martinique' 'Sao Tome' 'Argentina' 'Guatemala' 'South Africa' 'Bolivia' # 'St. Lucia' 'Portugal' 'Singapore' 'Denmark' 'Vietnam' 'Grenada' 'Israel' # 'India' 'Czech Republic' 'Domincan Republic' 'Finland' 'Madagascar' # 'Philippines' 'Sweden' 'Poland' 'Austria' 'Honduras' 'Nicaragua' # 'Lithuania' 'Niacragua' 'Chile' 'Ghana' 'Iceland' 'Eucador' 'Hungary' # 'Suriname' 'Ireland'] print(len(df['Maker Location'].unique())) # 60 loc_table = df['Maker Location'].value_counts() print(loc_table) #U.S.A. 764 #France 156 #Canada 125 #U.K. 96 #Italy 63 #Ecuador 54 #Australia 49 #Belgium 40 #Switzerland 38 #Germany 35 #Austria 26 #Spain 25 #Colombia 23 #Hungary 22 #Venezuela 20 #Madagascar 17 #Japan 17 #New Zealand 17 #Brazil 17 #Peru 17 #Denmark 15 #Vietnam 11 #Scotland 10 #Guatemala 10 #Costa Rica 9 #Israel 9 #Argentina 9 #Poland 8 #Honduras 6 #Lithuania 6 #Sweden 5 #Nicaragua 5 #Domincan Republic 5 #South Korea 5 #Netherlands 4 #Amsterdam 4 #Puerto Rico 4 #Fiji 4 #Sao Tome 4 #Mexico 4 #Ireland 4 #Portugal 3 #Singapore 3 #Iceland 3 #South Africa 3 #Grenada 3 #Chile 2 #St. Lucia 2 #Bolivia 2 #Finland 2 #Martinique 1 #Eucador 1 #Wales 1 #Czech Republic 1 #Suriname 1 #Ghana 1 #India 1 #Niacragua 1 #Philippines 1 #Russia 1 #Name: Maker Location, dtype: int64 loc_table.hist()
As can be seen from the above table, some of the locations have too few records, which will result in poor accuracy of the model to be learnt on after splitting the dataset into train, validation and test datasets. Let’s get rid of the locations that have small number of (< 40) examples in the dataset, to make the results more easily comprehendible, by reducing number of categories in the output variable.
## filter out the countries for which there is < 40 examples present in the dataset loc_gt_40_recs = loc_table[loc_table >= 40].index.tolist() df_sub = df[df['Maker Location'].isin(loc_gt_40_recs)] # now connect to H2O h2o.init() # h2o.clusterStatus()
H2O cluster uptime: | 1 day 14 hours 48 mins |
H2O cluster version: | 3.13.0.3978 |
H2O cluster version age: | 4 years and 9 days !!! |
H2O cluster name: | H2O_started_from_R_Sandipan.Dey_kpl973 |
H2O cluster total nodes: | 1 |
H2O cluster free memory: | 2.530 Gb |
H2O cluster total cores: | 4 |
H2O cluster allowed cores: | 4 |
H2O cluster status: | locked, healthy |
H2O connection url: | http://localhost:54321 |
H2O connection proxy: | None |
H2O internal security: | False |
H2O API Extensions: | Algos, AutoML, Core V3, Core V4 |
Python version: | 3.7.6 final |
h2o_df = h2o.H2OFrame(df_sub.values, destination_frame = "cacao_882", column_names=[x.replace(' ', '_') for x in df.columns.tolist()]) #h2o_df.head() #h2o_df.summary() df_cacao_882 = h2o.get_frame('cacao_882') # df_cacao_882.as_data_frame() #df_cacao_882.head() df_cacao_882.describe()
Maker | Origin | REF | Review_Date | Cocoa_Percent | Maker_Location | Rating | Bean_Type | Bean_Origin | |
---|---|---|---|---|---|---|---|---|---|
type | enum | enum | int | int | enum | enum | real | enum | enum |
mins | 5.0 | 2006.0 | 1.0 | ||||||
mean | 1025.8849294729039 | 2012.273942093541 | 3.1818856718633928 | ||||||
maxs | 1952.0 | 2017.0 | 5.0 | ||||||
sigma | 553.7812013716441 | 2.978615633185091 | 0.4911459825968248 | ||||||
zeros | 0 | 0 | 0 | ||||||
missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | A. Morin | Agua Grande | 1876.0 | 2016.0 | 63% | France | 3.75 | <0xA0> | Sao Tome |
1 | A. Morin | Kpime | 1676.0 | 2015.0 | 70% | France | 2.75 | <0xA0> | Togo |
2 | A. Morin | Atsane | 1676.0 | 2015.0 | 70% | France | 3.0 | <0xA0> | Togo |
3 | A. Morin | Akata | 1680.0 | 2015.0 | 70% | France | 3.5 | <0xA0> | Togo |
4 | A. Morin | Quilla | 1704.0 | 2015.0 | 70% | France | 3.5 | <0xA0> | Peru |
5 | A. Morin | Carenero | 1315.0 | 2014.0 | 70% | France | 2.75 | Criollo | Venezuela |
6 | A. Morin | Cuba | 1315.0 | 2014.0 | 70% | France | 3.5 | <0xA0> | Cuba |
7 | A. Morin | Sur del Lago | 1315.0 | 2014.0 | 70% | France | 3.5 | Criollo | Venezuela |
8 | A. Morin | Puerto Cabello | 1319.0 | 2014.0 | 70% | France | 3.75 | Criollo | Venezuela |
9 | A. Morin | Pablino | 1319.0 | 2014.0 | 70% | France | 4.0 | <0xA0> | Peru |
df_cacao_882['Maker_Location'].table() #Maker_Location Count #Australia 49 #Belgium 40 #Canada 125 #Ecuador 54 #France 156 #Italy 63 #U.K. 96 #U.S.A. 764 train, valid, test = df_cacao_882.split_frame(ratios = [0.8, 0.1], destination_frames = ['train', 'valid', 'test'], seed = 321) print("%d/%d/%d" %(train.nrows, valid.nrows, test.nrows)) # 1082/138/127
2. Let’s set x to be the list of columns we shall use to train on, to be the column we shall learn. Here it’s going to be a multi-class classification problem.
ignore_fields = ['Review_Date', 'Bean_Type', 'Maker_Location'] # Specify the response and predictor columns y = 'Maker_Location' # multinomial Classification x = [i for i in train.names if not i in ignore_fields]
3. Let’s now create a baseline deep learning model. It is recommended to use all default settings (remembering to
specify either nfolds or validation_frame) for the baseline model.
from h2o.estimators.deeplearning import H2ODeepLearningEstimator model = H2ODeepLearningEstimator() %time model.train(x = x, y = y, training_frame = train, validation_frame = valid) # deeplearning Model Build progress: |██████████████████████████████████████| 100% # Wall time: 6.44 s model.model_performance(train).mean_per_class_error() # 0.05118279569892473 model.model_performance(valid).mean_per_class_error() # 0.26888404593884047 perf_test = model.model_performance(test) print('Mean class error', perf_test.mean_per_class_error()) # Mean class error 0.2149184149184149 print('log loss', perf_test.logloss()) # log loss 0.48864148412056846 print('MSE', perf_test.mse()) # MSE 0.11940531127368789 print('RMSE', perf_test.rmse()) # RMSE 0.3455507361787671 perf_test.hit_ratio_table()
Top-8 Hit Ratios:
k | hit_ratio |
1 | 0.8897638 |
2 | 0.9291338 |
3 | 0.9527559 |
4 | 0.9685039 |
5 | 0.9763779 |
6 | 0.9921259 |
7 | 0.9999999 |
8 | 0.9999999 |
perf_test.confusion_matrix().as_data_frame()
Australia | Belgium | Canada | Ecuador | France | Italy | U.K. | U.S.A. | Error | Rate | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.400000 | 2 / 5 |
1 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.333333 | 1 / 3 |
2 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.076923 | 1 / 13 |
3 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 3 |
4 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 0.0 | 1.0 | 0.272727 | 3 / 11 |
5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.000000 | 0 / 10 |
6 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 2.0 | 4.0 | 4.0 | 0.636364 | 7 / 11 |
7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 71.0 | 0.000000 | 0 / 71 |
8 | 3.0 | 2.0 | 12.0 | 4.0 | 8.0 | 15.0 | 4.0 | 79.0 | 0.110236 | 14 / 127 |
model.plot()
4. Now, let’s create a tuned model, that gives superior performance. However we should use no more than 10 times
the running time of your baseline model, so again our script should be timing the model.
model_tuned = H2ODeepLearningEstimator(epochs=200, distribution="multinomial", activation="RectifierWithDropout", stopping_rounds=5, stopping_tolerance=0, stopping_metric="logloss", input_dropout_ratio=0.2, l1=1e-5, hidden=[200,200,200]) %time model_tuned.train(x, y, training_frame = train, validation_frame = valid) #deeplearning Model Build progress: |██████████████████████████████████████| 100% #Wall time: 30.8 s model_tuned.model_performance(train).mean_per_class_error() #0.0 model_tuned.model_performance(valid).mean_per_class_error() #0.07696485401964853 perf_test = model_tuned.model_performance(test) print('Mean class error', perf_test.mean_per_class_error()) #Mean class error 0.05909090909090909 print('log loss', perf_test.logloss()) #log loss 0.14153784501504524 print('MSE', perf_test.mse()) #MSE 0.03497231075826773 print('RMSE', perf_test.rmse()) #RMSE 0.18700885208531637 perf_test.hit_ratio_table()
Top-8 Hit Ratios:
k | hit_ratio |
1 | 0.9606299 |
2 | 0.984252 |
3 | 0.984252 |
4 | 0.992126 |
5 | 0.992126 |
6 | 0.992126 |
7 | 1.0 |
8 | 1.0 |
perf_test.confusion_matrix().as_data_frame()
Australia | Belgium | Canada | Ecuador | France | Italy | U.K. | U.S.A. | Error | Rate | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 5 |
1 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 3 |
2 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 13 |
3 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 3 |
4 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0 / 11 |
5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 8.0 | 0.0 | 1.0 | 0.200000 | 2 / 10 |
6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 3.0 | 0.272727 | 3 / 11 |
7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 71.0 | 0.000000 | 0 / 71 |
8 | 5.0 | 3.0 | 13.0 | 3.0 | 12.0 | 8.0 | 8.0 | 75.0 | 0.039370 | 5 / 127 |
model_tuned.plot()
As can be seen from the above plot, the early-stopping strategy stopped the model to overfit and the model achieves better accruacy on the test dataset..
5. Let’s save both the models, to the local disk, using save_model(), to export the binary version of the model. (Do not export a POJO.)
h2o.save_model(model, 'base_model') h2o.save_model(model_tuned, 'tuned_model')
We may want to include a seed in the model function above to get reproducible results.
Problem 3
Predict Price of a house with Stacked Ensemble model with H2O
The data is available at http://coursera.h2o.ai/house_data.3487.csv. This is a regression problem. We have to predict the “price” of a house given different feature values. We shall use python client for H2O again for this problem.
The data needs to be split into train and test, using 0.9 for the ratio, and a seed of 123. That should give 19,462 training rows and 2,151 test rows. The target is an RMSE below $123,000.
- Let’s start H2O, load the chosen dataset and follow the data manipulation steps. For example, we can split date into year and month columns. We can then optionally combine them into a numeric date column. At the end of this step we shall have
train
,test
,x
andy
variables, and possiblyvalid
also. The below shows the code snippet to do this.
import h2o import pandas as pd import numpy as np import matplotlib.pyplot as plt import random from time import time h2o.init() url = "http://coursera.h2o.ai/house_data.3487.csv" house_df = h2o.import_file(url, destination_frame = "house_data") # Parse progress: |█████████████████████████████████████████████████████████| 100%
Preporcessing
house_df['year'] = house_df['date'].substring(0,4).asnumeric() house_df['month'] = house_df['date'].substring(4,6).asnumeric() house_df['day'] = house_df['date'].substring(6,8).asnumeric() house_df = house_df.drop('date') house_df.head()
id | price | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement | yr_built | yr_renovated | zipcode | lat | long | sqft_living15 | sqft_lot15 | year | month | day |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1293e+09 | 221900 | 3 | 1 | 1180 | 5650 | 1 | 0 | 0 | 3 | 7 | 1180 | 0 | 1955 | 0 | 98178 | 47.5112 | -122.257 | 1340 | 5650 | 2014 | 10 | 13 |
6.4141e+09 | 538000 | 3 | 2.25 | 2570 | 7242 | 2 | 0 | 0 | 3 | 7 | 2170 | 400 | 1951 | 1991 | 98125 | 47.721 | -122.319 | 1690 | 7639 | 2014 | 12 | 9 |
5.6315e+09 | 180000 | 2 | 1 | 770 | 10000 | 1 | 0 | 0 | 3 | 6 | 770 | 0 | 1933 | 0 | 98028 | 47.7379 | -122.233 | 2720 | 8062 | 2015 | 2 | 25 |
2.4872e+09 | 604000 | 4 | 3 | 1960 | 5000 | 1 | 0 | 0 | 5 | 7 | 1050 | 910 | 1965 | 0 | 98136 | 47.5208 | -122.393 | 1360 | 5000 | 2014 | 12 | 9 |
1.9544e+09 | 510000 | 3 | 2 | 1680 | 8080 | 1 | 0 | 0 | 3 | 8 | 1680 | 0 | 1987 | 0 | 98074 | 47.6168 | -122.045 | 1800 | 7503 | 2015 | 2 | 18 |
7.23755e+09 | 1.225e+06 | 4 | 4.5 | 5420 | 101930 | 1 | 0 | 0 | 3 | 11 | 3890 | 1530 | 2001 | 0 | 98053 | 47.6561 | -122.005 | 4760 | 101930 | 2014 | 5 | 12 |
1.3214e+09 | 257500 | 3 | 2.25 | 1715 | 6819 | 2 | 0 | 0 | 3 | 7 | 1715 | 0 | 1995 | 0 | 98003 | 47.3097 | -122.327 | 2238 | 6819 | 2014 | 6 | 27 |
2.008e+09 | 291850 | 3 | 1.5 | 1060 | 9711 | 1 | 0 | 0 | 3 | 7 | 1060 | 0 | 1963 | 0 | 98198 | 47.4095 | -122.315 | 1650 | 9711 | 2015 | 1 | 15 |
2.4146e+09 | 229500 | 3 | 1 | 1780 | 7470 | 1 | 0 | 0 | 3 | 7 | 1050 | 730 | 1960 | 0 | 98146 | 47.5123 | -122.337 | 1780 | 8113 | 2015 | 4 | 15 |
3.7935e+09 | 323000 | 3 | 2.5 | 1890 | 6560 | 2 | 0 | 0 | 3 | 7 | 1890 | 0 | 2003 | 0 | 98038 | 47.3684 | -122.031 | 2390 | 7570 | 2015 | 3 | 12 |
house_df.describe()
id | price | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement | yr_built | yr_renovated | zipcode | lat | long | sqft_living15 | sqft_lot15 | year | month | day | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
type | int | int | int | real | int | int | real | int | int | int | int | int | int | int | int | int | real | real | int | int | int | int | int |
mins | 1000102.0 | 75000.0 | 0.0 | 0.0 | 290.0 | 520.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 290.0 | 0.0 | 1900.0 | 0.0 | 98001.0 | 47.1559 | -122.519 | 399.0 | 651.0 | 2014.0 | 1.0 | 1.0 |
mean | 4580301520.864987 | 540088.1417665284 | 3.370841623097218 | 2.114757321982139 | 2079.899736269819 | 15106.96756581695 | 1.4943089807060526 | 0.007541757275713691 | 0.23430342849211097 | 3.4094295100171164 | 7.6568731781798105 | 1788.3906907879518 | 291.50904548188555 | 1971.0051357979064 | 84.4022579003377 | 98077.93980474674 | 47.56005251931665 | -122.21389640494158 | 1986.5524915560036 | 12768.45565169118 | 2014.3229537778102 | 6.574422801091883 | 15.688196918521294 |
maxs | 9900000190.0 | 7700000.0 | 33.0 | 8.0 | 13540.0 | 1651359.0 | 3.5 | 1.0 | 4.0 | 5.0 | 13.0 | 9410.0 | 4820.0 | 2015.0 | 2015.0 | 98199.0 | 47.7776 | -121.315 | 6210.0 | 871200.0 | 2015.0 | 12.0 | 31.0 |
sigma | 2876565571.3120522 | 367127.19648270035 | 0.930061831147451 | 0.7701631572177408 | 918.4408970468095 | 41420.51151513551 | 0.5399888951423489 | 0.08651719772788766 | 0.7663175692736117 | 0.6507430463662044 | 1.1754587569743344 | 828.0909776519175 | 442.57504267746685 | 29.373410802386235 | 401.67924001917555 | 53.50502625747248 | 0.13856371024192368 | 0.14082834238139297 | 685.3913042527788 | 27304.179631338524 | 0.4676160310451536 | 3.1153077787263648 | 8.635062534286034 |
zeros | 0 | 0 | 13 | 10 | 0 | 0 | 0 | 21450 | 19489 | 0 | 0 | 0 | 13126 | 0 | 20699 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7129300520.0 | 221900.0 | 3.0 | 1.0 | 1180.0 | 5650.0 | 1.0 | 0.0 | 0.0 | 3.0 | 7.0 | 1180.0 | 0.0 | 1955.0 | 0.0 | 98178.0 | 47.5112 | -122.257 | 1340.0 | 5650.0 | 2014.0 | 10.0 | 13.0 |
1 | 6414100192.0 | 538000.0 | 3.0 | 2.25 | 2570.0 | 7242.0 | 2.0 | 0.0 | 0.0 | 3.0 | 7.0 | 2170.0 | 400.0 | 1951.0 | 1991.0 | 98125.0 | 47.721000000000004 | -122.319 | 1690.0 | 7639.0 | 2014.0 | 12.0 | 9.0 |
2 | 5631500400.0 | 180000.0 | 2.0 | 1.0 | 770.0 | 10000.0 | 1.0 | 0.0 | 0.0 | 3.0 | 6.0 | 770.0 | 0.0 | 1933.0 | 0.0 | 98028.0 | 47.7379 | -122.233 | 2720.0 | 8062.0 | 2015.0 | 2.0 | 25.0 |
3 | 2487200875.0 | 604000.0 | 4.0 | 3.0 | 1960.0 | 5000.0 | 1.0 | 0.0 | 0.0 | 5.0 | 7.0 | 1050.0 | 910.0 | 1965.0 | 0.0 | 98136.0 | 47.5208 | -122.393 | 1360.0 | 5000.0 | 2014.0 | 12.0 | 9.0 |
4 | 1954400510.0 | 510000.0 | 3.0 | 2.0 | 1680.0 | 8080.0 | 1.0 | 0.0 | 0.0 | 3.0 | 8.0 | 1680.0 | 0.0 | 1987.0 | 0.0 | 98074.0 | 47.616800000000005 | -122.045 | 1800.0 | 7503.0 | 2015.0 | 2.0 | 18.0 |
5 | 7237550310.0 | 1225000.0 | 4.0 | 4.5 | 5420.0 | 101930.0 | 1.0 | 0.0 | 0.0 | 3.0 | 11.0 | 3890.0 | 1530.0 | 2001.0 | 0.0 | 98053.0 | 47.6561 | -122.005 | 4760.0 | 101930.0 | 2014.0 | 5.0 | 12.0 |
6 | 1321400060.0 | 257500.0 | 3.0 | 2.25 | 1715.0 | 6819.0 | 2.0 | 0.0 | 0.0 | 3.0 | 7.0 | 1715.0 | 0.0 | 1995.0 | 0.0 | 98003.0 | 47.3097 | -122.327 | 2238.0 | 6819.0 | 2014.0 | 6.0 | 27.0 |
7 | 2008000270.0 | 291850.0 | 3.0 | 1.5 | 1060.0 | 9711.0 | 1.0 | 0.0 | 0.0 | 3.0 | 7.0 | 1060.0 | 0.0 | 1963.0 | 0.0 | 98198.0 | 47.4095 | -122.315 | 1650.0 | 9711.0 | 2015.0 | 1.0 | 15.0 |
8 | 2414600126.0 | 229500.0 | 3.0 | 1.0 | 1780.0 | 7470.0 | 1.0 | 0.0 | 0.0 | 3.0 | 7.0 | 1050.0 | 730.0 | 1960.0 | 0.0 | 98146.0 | 47.5123 | -122.337 | 1780.0 | 8113.0 | 2015.0 | 4.0 | 15.0 |
9 | 3793500160.0 | 323000.0 | 3.0 | 2.5 | 1890.0 | 6560.0 | 2.0 | 0.0 | 0.0 | 3.0 | 7.0 | 1890.0 | 0.0 | 2003.0 | 0.0 | 98038.0 | 47.3684 | -122.031 | 2390.0 | 7570.0 | 2015.0 | 3.0 | 12.0 |
plt.hist(house_df.as_data_frame()['price'].tolist(), bins=np.linspace(0,10**6,1000)) plt.show()
We shall use cross-validation and not a validation dataset.
train, test = house_df.split_frame(ratios=[0.9], destination_frames = ['train', 'test'], seed=123) print("%d/%d" %(train.nrows, test.nrows)) # 19462/2151 ignore_fields = ['id', 'price'] x = [i for i in train.names if not i in ignore_fields] y = 'price'
2. Let’s now train at least four different models on the preprocessed datseet, using at least three different supervised algorithms. Let’s save all the models.
from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.random_forest import H2ORandomForestEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator from h2o.estimators.deeplearning import H2ODeepLearningEstimator from h2o.estimators.stackedensemble import H2OStackedEnsembleEstimator nfolds = 5 # for cross-validation
Let’s first fit a GLM model. The best performing α hyperparameter value (for controlling L1 vs. L2 regularization) for GLM will be found using GridSearch, as shown in the below code snippet.
g= h2o.grid.H2OGridSearch( H2OGeneralizedLinearEstimator(family="gaussian", nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, lambda_search=True), hyper_params={ "alpha":[x * 0.01 for x in range(0,100)], }, search_criteria={ "strategy":"RandomDiscrete", "max_models":8, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) g #glm Grid Build progress: |████████████████████████████████████████████████| 100% # alpha \ #0 [0.61] #1 [0.78] #2 [0.65] #3 [0.13] #4 [0.35000000000000003] #5 [0.05] #6 [0.32] #7 [0.55] # model_ids residual_deviance #0 Grid_GLM_train_model_python_1628864392402_41_model_3 2.626981989511134E15 #1 Grid_GLM_train_model_python_1628864392402_41_model_6 2.626981989511134E15 #2 Grid_GLM_train_model_python_1628864392402_41_model_5 2.626981989511134E15 #3 Grid_GLM_train_model_python_1628864392402_41_model_2 2.626981989511134E15 #4 Grid_GLM_train_model_python_1628864392402_41_model_4 2.626981989511134E15 #5 Grid_GLM_train_model_python_1628864392402_41_model_7 2.626981989511134E15 #6 Grid_GLM_train_model_python_1628864392402_41_model_0 2.626981989511134E15 #7 Grid_GLM_train_model_python_1628864392402_41_model_1 2.626981989511134E15
Model 1
model_GLM= H2OGeneralizedLinearEstimator( family='gaussian', #'gamma', model_id='glm_house', nfolds=nfolds, alpha=0.61, fold_assignment="Modulo", keep_cross_validation_predictions=True) %time model_GLM.train(x, y, train) #glm Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 259 ms model_GLM.cross_validation_metrics_summary().as_data_frame()
mean | sd | cv_1_valid | cv_2_valid | cv_3_valid | cv_4_valid | cv_5_valid | ||
---|---|---|---|---|---|---|---|---|
0 | mae | 230053.23 | 715.8795 | 229225.16 | 230969.69 | 228503.45 | 230529.47 | 231038.42 |
1 | mean_residual_deviance | 1.31780157E11 | 4.5671977E9 | 1.32968604E11 | 1.41431144E11 | 1.31364495E11 | 1.32024402E11 | 1.21112134E11 |
2 | mse | 1.31780157E11 | 4.5671977E9 | 1.32968604E11 | 1.41431144E11 | 1.31364495E11 | 1.32024402E11 | 1.21112134E11 |
3 | null_deviance | 5.25455325E14 | 1.80834544E13 | 5.3056184E14 | 5.636807E14 | 5.23549568E14 | 5.26203388E14 | 4.83281095E14 |
4 | r2 | 0.023522535 | 4.801036E-4 | 0.024299357 | 0.023168933 | 0.022531934 | 0.023340257 | 0.024272196 |
5 | residual_deviance | 5.12943247E14 | 1.7808912E13 | 5.17646773E14 | 5.5059142E14 | 5.11270625E14 | 5.13838982E14 | 4.71368433E14 |
6 | rmse | 362905.53 | 6314.0225 | 364648.6 | 376073.3 | 362442.4 | 363351.62 | 348011.7 |
7 | rmsle | 0.53911585 | 0.0047404445 | 0.54277176 | 0.5389013 | 0.5275475 | 0.53846484 | 0.54789394 |
model_GLM.model_performance(test) #ModelMetricsRegressionGLM: glm #** Reported on test data. ** #MSE: 128806123545.59714 #RMSE: 358895.7000934911 #MAE: 233890.6933813204 #RMSLE: 0.5456714021880726 #R^2: 0.03102347771355851 #Mean Residual Deviance: 128806123545.59714 #Null degrees of freedom: 2150 #Residual degrees of freedom: 2129 #Null deviance: 285935013037402.7 #Residual deviance: 277061971746579.44 #AIC: 61176.23965800522
As can be seen from above, GLM could not achieve the target of RMSE below $123k neither on cross-validation nor on test dataset.
The below models (GBM, DRF and DL) and the corresponding parameters were found with AutoML leaderboard and
GridSearch, along with some manual tuning.
from h2o.automl import H2OAutoML model_auto = H2OAutoML(max_runtime_secs=60, seed=123) model_auto.train(x, y, train) # AutoML progress: |████████████████████████████████████████████████████████| 100% # Parse progress: |█████████████████████████████████████████████████████████| 100% model_auto.leaderboard
model_id | mean_residual_deviance | rmse | mae | rmsle |
---|---|---|---|---|
GBM_grid_0_AutoML_20210814_005121_model_0 | 2.01725e+10 | 142030 | 77779.1 | 0.184269 |
GBM_grid_0_AutoML_20210814_005121_model_1 | 2.6037e+10 | 161360 | 93068.1 | 0.218365 |
DRF_0_AutoML_20210814_005121 | 3.27251e+10 | 180901 | 102782 | 0.243474 |
XRT_0_AutoML_20210814_005121 | 3.53492e+10 | 188014 | 104259 | 0.246899 |
GBM_grid_0_AutoML_20210813_201225_model_0 | 5.99803e+10 | 244909 | 153548 | 0.351959 |
GBM_grid_0_AutoML_20210813_201225_model_2 | 6.09613e+10 | 246903 | 152570 | 0.349919 |
GBM_grid_0_AutoML_20210813_201225_model_1 | 6.09941e+10 | 246970 | 153096 | 0.350852 |
GBM_grid_0_AutoML_20210813_201225_model_3 | 6.22174e+10 | 249434 | 153105 | 0.350598 |
DeepLearning_0_AutoML_20210813_201225 | 6.39672e+10 | 252917 | 163993 | 0.378761 |
DRF_0_AutoML_20210813_201225 | 6.76936e+10 | 260180 | 158078 | 0.360337 |
model_auto.leader.model_performance(test) # model_auto.leader.explain(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 17456681023.716145 #RMSE: 132123.73376390839 #MAE: 77000.00253466706 #RMSLE: 0.1899899418603569 #Mean Residual Deviance: 17456681023.716145 model = h2o.get_model(model_auto.leaderboard[4, 'model_id']) # get model by model_id print(model.params['model_id']['actual']['name']) print(model.model_performance(test).rmse()) [(k, v) for (k, v) in model.params.items() if v['default'] != v['actual'] and \ not k in ['model_id', 'training_frame', 'validation_frame', 'nfolds', 'keep_cross_validation_predictions', 'seed', 'response_column', 'fold_assignment', 'ignored_columns']] # GBM_grid_0_AutoML_20210813_201225_model_0 # 235011.60404473927 # [('score_tree_interval', {'default': 0, 'actual': 5}), # ('ntrees', {'default': 50, 'actual': 60}), # ('max_depth', {'default': 5, 'actual': 6}), # ('min_rows', {'default': 10.0, 'actual': 1.0}), # ('stopping_tolerance', {'default': 0.001, 'actual': 0.008577452408351779}), # ('seed', {'default': -1, 'actual': 123}), # ('distribution', {'default': 'AUTO', 'actual': 'gaussian'}), # ('sample_rate', {'default': 1.0, 'actual': 0.8}), # ('col_sample_rate', {'default': 1.0, 'actual': 0.8}), # ('col_sample_rate_per_tree', {'default': 1.0, 'actual': 0.8})]
Model 2
model_GBM = H2OGradientBoostingEstimator( model_id='gbm_house', nfolds=nfolds, ntrees=500, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123) %time model_GBM.train(x, y, train) #gbm Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 54.9 s model_GBM.cross_validation_metrics_summary().as_data_frame()
mean | sd | cv_1_valid | cv_2_valid | cv_3_valid | cv_4_valid | cv_5_valid | ||
---|---|---|---|---|---|---|---|---|
0 | mae | 64136.496 | 912.2387 | 62751.688 | 66573.63 | 63946.31 | 63873.707 | 63537.137 |
1 | mean_residual_deviance | 1.38268457E10 | 1.43582912E9 | 1.24595825E10 | 1.75283814E10 | 1.2894718E10 | 1.43893801E10 | 1.18621655E10 |
2 | mse | 1.38268457E10 | 1.43582912E9 | 1.24595825E10 | 1.75283814E10 | 1.2894718E10 | 1.43893801E10 | 1.18621655E10 |
3 | r2 | 0.8979097 | 0.0075696795 | 0.90857375 | 0.87893564 | 0.9040519 | 0.89355356 | 0.90443367 |
4 | residual_deviance | 1.38268457E10 | 1.43582912E9 | 1.24595825E10 | 1.75283814E10 | 1.2894718E10 | 1.43893801E10 | 1.18621655E10 |
5 | rmse | 117288.305 | 5928.7188 | 111622.5 | 132394.8 | 113554.914 | 119955.74 | 108913.57 |
6 | rmsle | 0.16441989 | 0.0025737707 | 0.16231671 | 0.17041409 | 0.15941188 | 0.16528262 | 0.16467415 |
As can be seen from the above table (row 5, column 1), the mean RMSE for cross-validation is 117288.305, which is below $123k.
model_GBM.model_performance(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 14243079402.729088 #RMSE: 119344.37315068142 #MAE: 65050.344749203745 #RMSLE: 0.16421689257411975 #Mean Residual Deviance: 14243079402.729088
As can be seen from above, GBM could achieve the target of RMSE below $123k on test dataset.
Now, let’s try random forest model by finding best parameters with Grid Search:
g= h2o.grid.H2OGridSearch( H2ORandomForestEstimator( nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123), hyper_params={ "ntrees": [20, 25, 30], "stopping_tolerance": [0.005, 0.006, 0.0075], "max_depth": [20, 50, 100], "min_rows": [5, 7, 10] }, search_criteria={ "strategy":"RandomDiscrete", "max_models":10, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) #drf Grid Build progress: |████████████████████████████████████████████████| 100% g # max_depth min_rows ntrees stopping_tolerance \ #0 100 5.0 20 0.006 #1 100 5.0 20 0.005 #2 100 5.0 20 0.005 #3 100 7.0 30 0.006 #4 50 10.0 25 0.006 #5 50 10.0 20 0.005 # model_ids residual_deviance #0 Grid_DRF_train_model_python_1628864392402_40_model_0 2.0205038467456142E10 #1 Grid_DRF_train_model_python_1628864392402_40_model_5 2.0205038467456142E10 #2 Grid_DRF_train_model_python_1628864392402_40_model_1 2.0205038467456142E10 #3 Grid_DRF_train_model_python_1628864392402_40_model_3 2.099520493338354E10 #4 Grid_DRF_train_model_python_1628864392402_40_model_2 2.260686283035833E10 #5 Grid_DRF_train_model_python_1628864392402_40_model_4 2.279037520277947E10
Model 3
model_RF = H2ORandomForestEstimator( model_id='rf_house', nfolds=nfolds, ntrees=20, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123) %time model_RF.train(x, y, train) #drf Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 13.2 s model_RF.cross_validation_metrics_summary().as_data_frame()
mean | sd | cv_1_valid | cv_2_valid | cv_3_valid | cv_4_valid | cv_5_valid | ||
---|---|---|---|---|---|---|---|---|
0 | mae | 72734.0 | 1162.9153 | 73242.26 | 75062.21 | 73461.65 | 71646.195 | 70257.7 |
1 | mean_residual_deviance | 1.8545494E10 | 2.2018921E9 | 1.79095654E10 | 2.45911347E10 | 1.74433321E10 | 1.71117425E10 | 1.56716954E10 |
2 | mse | 1.8545494E10 | 2.2018921E9 | 1.79095654E10 | 2.45911347E10 | 1.74433321E10 | 1.71117425E10 | 1.56716954E10 |
3 | r2 | 0.8632202 | 0.011770816 | 0.8685827 | 0.8301549 | 0.8702062 | 0.8734147 | 0.8737426 |
4 | residual_deviance | 1.8545494E10 | 2.2018921E9 | 1.79095654E10 | 2.45911347E10 | 1.74433321E10 | 1.71117425E10 | 1.56716954E10 |
5 | rmse | 135742.78 | 7726.2373 | 133826.62 | 156815.61 | 132073.2 | 130811.86 | 125186.64 |
6 | rmsle | 0.18275535 | 0.0020155373 | 0.18441868 | 0.18689767 | 0.17945778 | 0.1833288 | 0.17967385 |
model_RF.model_performance(test) ModelMetricsRegression: drf ** Reported on test data. ** MSE: 16405336914.530426 RMSE: 128083.3202041953 MAE: 71572.37981480274 RMSLE: 0.17712324625977907 Mean Residual Deviance: 16405336914.530426
As can be seen from above, DRF just missed the target of RMSE below $123k for on both the cross-validation and on test dataset.
Now, let’s try to fit a deep learning model, again tuning the parameters with Grid Search.
g= h2o.grid.H2OGridSearch( H2ODeepLearningEstimator( nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, reproducible=True, seed=123), hyper_params={ "epochs": [20, 25], "hidden": [[20, 20, 20], [25, 25, 25]], "stopping_rounds": [0, 5], "stopping_tolerance": [0.006] }, search_criteria={ "strategy":"RandomDiscrete", "max_models":10, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) g #deeplearning Grid Build progress: |███████████████████████████████████████| 100% # epochs hidden stopping_rounds stopping_tolerance \ #0 16.79120554889533 [25, 25, 25] 0 0.006 #1 3.1976799968879086 [25, 25, 25] 0 0.006 # model_ids \ #0 Grid_DeepLearning_train_model_python_1628864392402_55_model_0 #1 Grid_DeepLearning_train_model_python_1628864392402_55_model_1 # residual_deviance #0 1.6484562934855278E10 #1 2.1652538389322113E10
Model 4
model_DL = H2ODeepLearningEstimator(epochs=30, model_id='dl_house', nfolds=nfolds, stopping_rounds=7, stopping_tolerance=0.006, hidden=[30, 30, 30], reproducible=True, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123 ) %time model_DL.train(x, y, train) #deeplearning Model Build progress: |██████████████████████████████████████| 100% #Wall time: 55.7 s model_DL.cross_validation_metrics_summary().as_data_frame()
mean | sd | cv_1_valid | cv_2_valid | cv_3_valid | cv_4_valid | cv_5_valid | ||
---|---|---|---|---|---|---|---|---|
0 | mae | 72458.19 | 1241.8936 | 71992.18 | 73569.984 | 75272.75 | 70553.38 | 70902.65 |
1 | mean_residual_deviance | 1.48438886E10 | 5.5005555E8 | 1.42477005E10 | 1.59033723E10 | 1.54513889E10 | 1.48586271E10 | 1.37583514E10 |
2 | mse | 1.48438886E10 | 5.5005555E8 | 1.42477005E10 | 1.59033723E10 | 1.54513889E10 | 1.48586271E10 | 1.37583514E10 |
3 | r2 | 0.8899759 | 0.0023493338 | 0.89545286 | 0.8901592 | 0.885028 | 0.89008224 | 0.88915724 |
4 | residual_deviance | 1.48438886E10 | 5.5005555E8 | 1.42477005E10 | 1.59033723E10 | 1.54513889E10 | 1.48586271E10 | 1.37583514E10 |
5 | rmse | 121793.58 | 2259.6975 | 119363.734 | 126108.58 | 124303.62 | 121895.97 | 117296.0 |
6 | rmsle | 0.18431115 | 0.0011469581 | 0.18251595 | 0.18650953 | 0.18453318 | 0.18555655 | 0.18244053 |
As can be seen from the above table (row 5, column 1), the mean RMSE for cross-validation is 121793.58, which is below $123k.
model_DL.model_performance(test) #ModelMetricsRegression: deeplearning #** Reported on test data. ** #MSE: 14781990070.095192 #RMSE: 121581.20771770278 #MAE: 72522.60487846025 #RMSLE: 0.1834924698171073 #Mean Residual Deviance: 14781990070.095192
As can be seen from above, the deep learning model could achieve the target of RMSE below $123k on test dataset.
3. Finally, let’s train a stacked ensemble of the models created in earlier steps. We may need to repeat steps two and three until the best model (which is usually the ensemble model, but does not have to be) has the minimum required performance on the cross-validation dataset. Note: only one model has to achieve the minimum required performance. If multiple models achieve it, so we need to choose the best performing one.
models = [model_GBM.model_id, model_RF.model_id, model_DL.model_id] #model_GLM.model_id, model_SE = H2OStackedEnsembleEstimator(model_id = 'se_gbm_dl_house', base_models=models) %time model_SE.train(x, y, train) #stackedensemble Model Build progress: |███████████████████████████████████| 100% #Wall time: 2.67 s #model_SE.model_performance(test) #ModelMetricsRegressionGLM: stackedensemble #** Reported on test data. ** #MSE: 130916347835.45828 #RMSE: 361823.6418967924 #MAE: 236448.3672215734 #RMSLE: 0.5514878971097109 #R^2: 0.015148783736682492 #Mean Residual Deviance: 130916347835.45828 #Null degrees of freedom: 2150 #Residual degrees of freedom: 2147 #Null deviance: 285935013037402.7 #Residual deviance: 281601064194070.75 #AIC: 61175.193832813566
As can be seen from above, the stacked ensemble model could not reach the required performance, neither on the cross-validation, nor on the test dataset.
4. Now let’s get the performance on the test data of the chosen model/ensemble, and confirm that this also reaches the minimum target on the test data.
Best Model
The model that performs best in terms of mean cross-validation RMSE and RMSE on the test dataset (both of them are below the minimum target $123k) is the gradient boositng model (GBM), which is the Model 2 above.
model_GBM.model_performance(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 14243079402.729088 #RMSE: 119344.37315068142 #MAE: 65050.344749203745 #RMSLE: 0.16421689257411975 #Mean Residual Deviance: 14243079402.729088 # save the models h2o.save_model(model_GBM, 'best_model (GBM)') # the final best model h2o.save_model(model_SE, 'SE_model') h2o.save_model(model_GBM, 'GBM_model') h2o.save_model(model_RF, 'RF_model') h2o.save_model(model_GLM, 'GLM_model') h2o.save_model(model_DL, 'DL_model')