Data is an essential topic in todays business world. Every business owner wants to talk about innovative ideas and the value that can flow from data. The data regarding markets, customers, agencies, other companies, and publishers are considered to be valuable resources. Statistics and data are only useful if they are of high quality.
The definition of data quality is so broad that it helps companies with different markets and missions to understand whether their data meets the standards. There are some major benefits of Data Quality that will help you to recognize the true values of high-quality data. Good data requires data governance, strict data management, accurate data collection, and careful design of control programs. For all quality issues, it is much easier and less costly to prevent data issues from happening. You can say that data quality is the key to being successful.
Gartner describes Data Ops as a collaborative data management practice focused on improving the communication, integration, and automation of data flows between data managers and data consumers across an organization. Data Ops is about reorienting data management to be about value creation. The Data Ops mentality stresses cross-functional collaboration in data management, learning by doing, rapid deployment, and building on what works.
Gartner recommends three approaches to DataOps based on how an organization consumes data. They are,
Utility Value Proposition
By treating data as a utility that focuses on removing silos and manual effort when accessing and managing data. As such, data and analytics are readily available to all key roles. Because there are many relevant roles and not a single owner of the data, assign a data product manager to ensure data consumers needs are being met.
Enabler Value Proposition
For this value proposition, data and analytics support specific use cases such as fraud detection, analysis of supply chain optimization, or inter-enterprise data sharing. Product serving their use case.
According to Gartner, the enabler value proposition works best for teams supporting specific business use cases. DataOps must focus on early and frequent collaboration with the business unit stakeholders who are the customers for a specific product serving their use case.
- Collaboration is a key benefit of DataOps that weve explored extensively.
- Our DataOps Platform has functionality that will enable you to report on data team productivity and efficiency.
Driver Value Proposition
Use data and analytics to create new products and services, generate new revenue streams or enter new markets. For example, an idea for a new connected product emerges from your lab and must evolve into a production quality product for use by your customers. Use DataOps to link Can we do this? to How do we provide an optimized, governed data-driven product to our consumers?
Gartner explains that this is the proposition that causes intractable challenges relating to data governance and the promotion of new discoveries into production.
Conclusion
Many organizations are unaware of the importance of data in conducting business processes. Its vital in providing management information about the business operations results. Because corporate data forms the basis of decision-making in an organization. Its important that data is appropriate and effective to help make good decisions. Determining and enforcing appropriate data quality rules and regulations is the central key to the quality of data and testing. In the years to come, there will be an increase in data analysts, data analysis software, and companies that will structure the quality management of data. Delivering DataOps using each value proposition will foster collaboration between stakeholders and data implementers delivering the right value proposition with the right data at the right time.