This announcement was published by the American Statistical Association.
The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for un- dergraduate programs in data science. The group consisted of 25 un- dergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science.
Table of Contents:
1. Introduction …………………………………………………………………………………….. 2
2. Background and Guiding Principles……………………………………………………………….. 3
2.1. Data Science as Science …………………………………………………………………….. 4
2.2. Interdisciplinary Nature of Data Science ……………………………………………………… 4
2.3. Data at the Core ……………………………………………………………………………. 5
2.4. Analytical (Computational and Statistical)Thinking …………………………………………… 5
2.5. Mathematical Foundations…………………………………………………………………… 6
2.6. Flexibility …………………………………………………………………………………… 6
3. Key Competencies and Features of a Data Science Major ………………………………………….. 6
3.1. Analytical Thinking …………………………………………………………………………. 7
3.2. Mathematical Foundations…………………………………………………………………… 8
3.3. Model Building and Assessment ……………………………………………………………… 8
3.4. Algorithms and Software Foundation …………………………………………………………. 9
3.5. Data Curation ………………………………………………………………………………. 9
3.6. Knowledge Transference …………………………………………………………………….. 9
4. Curricular Content for Data Science Majors……………………………………………………….. 10
4.1. Overview of Course Sequence………………………………………………………………… 11
5. Additional Considerations ……………………………………………………………………….. 13
6. Transitioning to a Data Science Major Using Typical Existing Courses ……………………………… 15
6.1. Courses in Mathematics……………………………………………………………………… 15
6.2. Courses in Computer Science ………………………………………………………………… 16
6.3. Courses in Statistics…………………………………………………………………………. 16
6.4. Related Courses …………………………………………………………………………….. 16
7. Summary and Next Steps ………………………………………………………………………… 16
8. Appendix – Detailed Courses for a Proposed Data Science Major…………………………………… 18
To check out all this information, click here.
Top DSC Resources
- Article: What is Data Science? 24 Fundamental Articles Answering This Question
- Article: Hitchhiker’s Guide to Data Science, Machine Learning, R, Python
- Tutorial: Data Science Cheat Sheet
- Tutorial: How to Become a Data Scientist – On Your Own
- Categories: Data Science – Machine Learning – AI – IoT – Deep Learning
- Tools: Hadoop – DataViZ – Python – R – SQL – Excel
- Techniques: Clustering – Regression – SVM – Neural Nets – Ensembles – Decision Trees
- Links: Cheat Sheets – Books – Events – Webinars – Tutorials – Training – News – Jobs
- Links: Announcements – Salary Surveys – Data Sets – Certification – RSS Feeds – About Us
- Newsletter: Sign-up – Past Editions – Members-Only Section – Content Search – For Bloggers
- DSC on: Ning – Twitter – LinkedIn – Facebook – GooglePlus
Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge