Home » Uncategorized

Book: Mastering Feature Engineering

2808328904Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap on feature engineering, this complete hands-on guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic.

Author Alice Zheng explains common practices and mathematical principles to help engineer features for new data and tasks. If you understand basic machine learning concepts like supervised and unsupervised learning, you’re ready to get started. Not only will you learn how to implement feature engineering in a systematic and principled way, you’ll also learn how to practice better data science.

  • Learn exactly what feature engineering is, why it’s important, and how to do it well
  • Use common methods for different data types, including images, text, and logs
  • Understand how different techniques such as feature scaling and principal component analysis work
  • Understand how unsupervised feature learning works in the case of deep learning for images

About the Author:

2808328875

Alice Zheng

Alice is a technical leader in the field of Machine Learning. Her experience spans algorithm and platform development and applications. Currently, she is a Senior Manager in Amazon’s Ad Platform. Previous roles include Director of Data Science at GraphLab/Dato/Turi, machine learning researcher at Microsoft Research, Redmond, and postdoctoral fellow at Carnegie Mellon University. She received a Ph.D. in Electrical Engineering and Computer science, and B.A. degrees in Computer Science in Mathematics, all from U.C. Berkeley.

The book is available, here.

Top DSC Resources

Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge

Leave a Reply

Your email address will not be published. Required fields are marked *